Skip to main content
Log in

Ag Raman modes of RBCO (R = Gd, Pr) by density functional theory approach

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Ab initio total energy calculations have been performed for superconducting GdBa2Cu3O7 and insulating PrBa2Cu3O7 using the full-potential linear augmented plane-wave method in the local density approximation (LDA) and generalized gradient approximation (GGA). The comparison of the calculated unit cell volume and lattice parameters with the experimental data indicates the improvement of these parameters in the GGA relative to LDA. LDA and GGA give the equilibrium unit cell volume about 6% smaller and 1.25% larger than the experimental data, respectively for both systems. Thus frozen phonon calculations have been performed to determine the eigenvalues and eigenvectors of the k=0 Ag modes of the two systems in equilibrium structure have been obtained in GGA. The calculated frequencies in the GGA are in good agreement with the other LDA calculations for similar systems. Comparison of computational data with experimental data indicates that calculations determine the frequencies about ten percent below the experimental data. Even by improving LDA to GGA in these calculations, the calculated phonon frequencies have remained almost ten percent below the experimental data, even though the calculated unit cell volumes are nearly equal to the experimental data. So, applying GGA has not considerably decreased the difference between the computational and experimental data. The effect of Pr doping on the eigenvalues and eigenvectors have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, Z.-X. Shen, Nature 412, 510 (2001)

    Article  ADS  Google Scholar 

  • G.-H. Gweon, T. Sasagawa, S.Y. Zhou, J. Graft, H. Takagi, D.-H. Lee, A. Lanzara, Nature 430, 187 (2004)

    Article  ADS  Google Scholar 

  • M.L. Kulic, O.V. Dolgov, Phys. Rev. B 71, 092505 (2005)

    Article  ADS  Google Scholar 

  • P.W. Anderson, Science 235, 1196 (1987)

    ADS  Google Scholar 

  • P. Monthoux, A.V. Balatsky, D. Pines, Phys. Rev. B 46, 14803 (1992)

    Article  ADS  Google Scholar 

  • http://www.fkf.mpg.de/andersen/phonons/hightc.html

  • O. Rosch, O. Gunnarsson, Phys. Rev. Lett. 92, 146403 (2004)

    Article  ADS  Google Scholar 

  • H. Krakauer, W.E. Pickett, R.E. Cohen, Phys. Rev. B 47, 1002 (1993)

    Article  ADS  Google Scholar 

  • P.B. Allen, in Physical Properties of High Temperature Superconductors, edited by D.M. Ginsberg (World Scientific, Singapore, 1989), Vol. I, p. 213

  • J.P. Franck, in Physical Properties of High Temperature Superconductors, edited by D.M. Ginsberg (World Scientific, Singapore, 1994), Vol. IV, p. 189

  • M.L. Kulic, Phys. Rep. 338, 1 (2000)

    Article  ADS  Google Scholar 

  • H. Khosroabadi, V. Daadmehr, M. Akhavan, Mod. Phys. Lett. B 16, 943 (2002)

    Article  ADS  Google Scholar 

  • H. Khosroabadi, M. Modarreszadeh, P. Taheri, M. Akhavan, J. Superconductivity 17, 749 (2003)

    Article  Google Scholar 

  • M. Akhavan, Physica B 321, 265 (2002)

    Article  ADS  Google Scholar 

  • Y. Xu, W. Guan, Phys. Rev. B 45, R3176 (1992)

  • R. Bhadra, T.O. Brun, M.A. Beno, B. Dabrowski, D.G. Hinks, J.Z. Liu, J.D. Jorgensen, L.J. Nowicki, A.P. Paulikas, I.K. Schuller, C.U. Segre, L. Soderholm, B. Veal, H.H. Wang, J.M. Williams, K. Zhang, M. Grimsditch, Phys. Rev. B 37, 5142 (1988)

    Article  ADS  Google Scholar 

  • C.H. Gardiner, A.T. Boothroyd, B.H. Larsen, W. Reichardt, A.A. Zhokhov, N.H. Andersen, S.J.S. Lister, A.R. Wildes, e-print arXiv:cond-mat/0310555

  • A.P. Litvinchuk, C. Thomsen, I.E. Trofimov, H.-U. Habermeier, M. Cardona, Phys. Rev. B 46, 14017 (1992)

    Article  ADS  Google Scholar 

  • R. Kouba, C. Ambrosch-Draxl, B. Zangger, Phys. Rev. B 60, 9321 (1999)

    Article  ADS  Google Scholar 

  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheniz Schwarz, Techn. Universitat Wien, Austria, 2001)

  • P. Blaha, K. Schwarz, P. Sorantin, B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  • Z. Yamani, M. Akhavan, Physica C 268, 78 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  • H. Khosroabadi, B. Mossalla, M. Akhavan, Phys. Rev. B 70, 134509 (2004)

    Article  ADS  Google Scholar 

  • R.M. Hazen, in Physical Properties of High Temperature Superconductors, edited by D.M. Ginsberg (World Scientific, Singapore, 1989), Vol. II, p. 121

  • X.J. Chen, C.D. Gong, Y.B. Yu, Phys. Rev. B 61, 3691 (2000)

    Article  ADS  Google Scholar 

  • Physical Properties of High Temperature Superconductors, edited by C. Thomsen, M. Cardona, D.M. Ginsberg (World Scientific, Singapore, 1989), Vol. I, p. 409

  • T. Strach, T. Ruf, E. Schönherr, M. Cardona, Phys. Rev. B 51, 16460 (1995)

    Article  ADS  Google Scholar 

  • G. Burns, F.H. Dacol, F. Holtzberg, D.L. Kaiser, Solid State Commun. 66, 217 (1988)

    Article  ADS  Google Scholar 

  • K.F. McCarty, J.Z. Liu, R.N. Shelton, H.B. Radousky, Phys. Rev. B 41, 8792 (1990)

    Article  ADS  Google Scholar 

  • C.O. Rodriguez, A.I. Liechtenstein, I.I. Mazin, O. Jepsen, O.K. Andersen, M. Methfessel, Phys. Rev. B 42, R2692 (1990)

  • C. Ambrosch-Draxl, R. Kouba, P. Knoll, Z. Phys. B 104, 687 (1997)

    Article  Google Scholar 

  • R. Fehrenbacher, T.M. Rice, Phys. Rev. Lett. 70, 3471 (1993)

    Article  ADS  Google Scholar 

  • A.I. Liechtenstein, I.I. Mazin, Phys. Rev. Lett. 74, 1000 (1995); I.I. Mazin, A.I. Liechtenstein, Phys. Rev. B 57, 150 (1998)

    Article  ADS  Google Scholar 

  • H.B. Radousky, K.F. McCarty, J.L. Peng, R.N. Shelton, Phys. Rev. B 39, R12383 (1999)

  • I.-S. Yang, G. Burns, F.H. Dacol, C.C. Tsuei, Phys. Rev. B 42, 4240 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akhavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosroabadi, H., Tavana, A. & Akhavan, M. Ag Raman modes of RBCO (R = Gd, Pr) by density functional theory approach. Eur. Phys. J. B 51, 161–165 (2006). https://doi.org/10.1140/epjb/e2006-00216-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00216-8

PACS.

Navigation